Monotone Proper Interval Digraphs and Min-Max Orderings
نویسندگان
چکیده
We introduce a class of digraphs analogous to proper interval graphs and bigraphs. They are defined via a geometric representation by two inclusion-free families of intervals satisfying a certain monotonicity condition; hence we call them monotone proper interval digraphs. They admit a number of equivalent definitions, including an ordering characterization by so-called MinMax orderings, and the existence of certain graph polymorphisms. Min-Max orderings arose in the study of minimum cost homomorphism problems: if H admits a a Min-Max ordering (or a certain extension of Min-Max orderings), then the minimum cost homomorphism problem to H is known to admit a polynomial time algorithm. We give a forbidden structure characterization of monotone proper interval digraphs, which implies a polynomial time recognition algorithm. This characterizes digraphs with a Min-Max ordering; we also similarly characterize digraphs with an extended Min-Max ordering. In a companion paper, we shall apply this latter characterization to derive a conjectured dichotomy classification for the minimum cost homomorphism problems—namely, we shall prove that the minimum cost homomorphism problem to a digraph that does not admit an extended Min-Max ordering is NP-complete.
منابع مشابه
Duality for Min-Max Orderings and Dichotomy for Min Cost Homomorphisms
Min-Max orderings correspond to conservative lattice polymorphisms. Digraphs with Min-Max orderings have polynomial time solvable minimum cost homomorphism problems. They can also be viewed as digraph analogues of proper interval graphs and bigraphs. We give a forbidden structure characterization of digraphs with a Min-Max ordering which implies a polynomial time recognition algorithm. We also ...
متن کاملThe Dichotomy of Minimum Cost Homomorphism Problems for Digraphs
The minimum cost homomorphism problem has arisen as a natural and useful optimization problem in the study of graph (and digraph) coloring and homomorphisms: it unifies a number of other well studied optimization problems. It was shown by Gutin, Rafiey, and Yeo that the minimum cost problem for homomorphisms to a digraph H that admits a so-called extended MinMax ordering is polynomial time solv...
متن کاملSubmodular Maximization over Multiple Matroids via Generalized Exchange Properties
Submodular-function maximization is a central problem in combinatorial optimization, generalizing many important NP-hard problems including Max Cut in digraphs, graphs and hypergraphs, certain constraint satisfaction problems, maximum-entropy sampling, and maximum facility-location problems. Our main result is that for any k ≥ 2 and any ε > 0, there is a natural local-search algorithm which has...
متن کاملMonotone interval eigenproblem in max-min algebra
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library The interval eigenpr...
متن کاملRecognition and Characterization of Chronological Interval Digraphs
Interval graphs admit elegant ordering and structural characterizations as well as linear time recognition algorithms. On the other hand, the usual interval digraphs lack all three of these characteristics. In this paper we identify another natural digraph analogue of interval graphs that we call “chronological interval digraphs”. By contrast, the new class admits an ordering characterization, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 26 شماره
صفحات -
تاریخ انتشار 2012